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Abstract

Characterizing the tails of probability distributions plays a key role in quantification of margins
and uncertainties (QMU), where the goal is characterization of low probability, high consequence
events based on continuous measures of performance. When data are collected using physical
experimentation, probability distributions are typically fit using statistical methods based on the
collected data, and these parametric distributional assumptions are often used to extrapolate about
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the extreme tail behavior of the underlying probability distribution. In this project, we character-
ize the risk associated with such tail extrapolation. Specifically, we conducted a scaling study to
demonstrate the large magnitude of the risk; then, we developed new methods for communicat-
ing risk associated with tail extrapolation from unvalidated statistical models; lastly, we proposed
a Bayesian data-integration framework to mitigate tail extrapolation risk through integrating ad-
ditional information. We conclude that decision-making using QMU is a complex process that
cannot be achieved using statistical analyses alone.
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Chapter 1

Introduction

A common objective in reliability engineering is demonstrating with high confidence that a com-
ponent can meet and has margin to a performance requirement. When component performance
measures are continuous, such reliability statements are often made by characterizing the tails of
the performance measure distribution using computational simulations or through physical exper-
imentation. When experimental data are collected, the tails of the performance distribution are
typically estimated using statistical methods; and margin to the requirement is characterized using
probabilistic statements about the estimated tails. Tail characterization plays a key role in fields
like probabilistic risk assessment (Atwood et al., 2003; Haimes and Lambert, 1999; Mosleh, 1986)
and system reliability and safety (Wallstrom, 2011), with applications in high-consequence set-
tings such as nuclear power plants and nuclear weapons. In such analyses, high system reliability
at the top (system) level is achieved by specifying even higher reliability for sub-system level
components; however, ‘reliability is most sensitive to the tails of these [sub-system] distributions’
(Wallstrom, 2011). With high reliability requirements, the sample size is often too small to make
nonparametric inferences about extreme tails of a distribution; in this case, parametric distribu-
tional assumptions are often used to extrapolate about the extreme tail behavior of the underlying
probability distribution (Scholz, 2005).

Quantification of margins and uncertainties (QMU) is a process for quantifying nuclear weapon
performance margin and corresponding uncertainty to support risk-informed decision-making about
the stockpile (Pilch et al., 2006). In recent years, QMU methods at Sandia National Laboratories
(SNL) have relied on characterization of tail behavior using statistical tolerance intervals to in-
form whether a component has sufficient margin to a requirement. The goal of this report is to
characterize risk associated with tail estimation in small to moderate samples.

1.1 Background on QMU for PhysSim at SNL

QMU methods differ across the nulcear weapons laboratories (Eardley, 2005); specifically, QMU
at Los Alamos and Livermore National Laboratories pertains primarily to computational simula-
tion due to the data-poor nature of their applications, while QMU at Sandia National Laboratories
(SNL) uses more experimental data (called physical simulation or PhysSim data) due to the data-
rich nature of Sandia applications (National Research Council, 2008). While the original frame-
work for QMU at SNL was broad conceptual framework (Pilch et al., 2006; Helton, 2009), efforts
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to move QMU toward experimental data applications (Diegert et al., 2007) have resulted in rather
prescriptive, algorithmic processes for PhysSim QMU at SNL (Newcomer et al., 2012). In recent
years, the tolerance interval methodology was introduced as the specific methodology to quantify
margin in important performance parameters.

PhysSim QMU guidance

The SNL QMU Handbook (Newcomer, 2012) outlines a specific process for implementing Phys-
Sim QMU. The first step is identifying parameters, data, and requirements to use in a QMU;
specifically, important performance parameters are identified, their requirements are determined,
and then relevant data on the performance parameters are collected and aggregated.

Given a performance measure, requirement, and data, steps outlined in the QMU handbook
(Newcomer et al., 2012) for quantifying margin and uncertainty are as follows:

1. Conduct an engineering analysis to assess the data quality.

2. Select a probability distribution for the data.

The user is advised to use probability plots and distributional hypothesis tests (Anderson-
Darling) to select a probability distribution for the data. The user is subsequently warned
that, “Not all data are Normally distributed, nor should they be expected to be” (Newcomer
et al., 2012).

3. Estimate a tolerance bound and tolerance ratio for the data.

The QMU handbook recommends using statistical tolerance bounds to estimate margin, de-
fined as the distance between the estimated percentile and CD requirements, and uncertainty,
defined as the distance between the estimated percentile and the tolerance bound (Figure 1.1).

QMU analyses are then directed at answering the question: “Are we XX% certain that at-
least YY% of the unit population will yield a response greater than the threshold T?” (New-
comer et al., 2012).

The recommended ‘figure of merit’ for decision making is the tolerance ratio, defined as the
margin divided by the uncertainty (M/U). Decisions are then based on this M/U metric,
noting that, “Comparing the new tolerance ratio against the critical value of 1 is the only
decision criteria needed” (Newcomer et al., 2012).

Example implementation of QMU recommendations

To illustrate the PhysSim QMU process, we proceed through the steps using a hypothetical launch
safety device as an example. While the example is hypothetical, it is based on our experiences
working with component teams to conduct QMU analyses.
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Figure 1.1: Definition of margin and uncertainty in QMU PhysSim process.

Suppose we have 10 closing time measurements (performance parameter) from a launch safety
device. For the QMU, we aim to estimate the 99.9th percentile of the closing time distribution with
a 95% upper confidence bound to show that we can meet a 34s closing time requirement.

1. Engineering analysis. We conduct an engineering analysis on the data based on the hand-
book recommendations. The data are plotted in Figure 1.2. From an engineering analysis,
we conclude that: the data are of sufficient quality but the sample size is small (10 units).

Figure 1.2: Histogram for the n = 10 closing time measurements, with the performance require-
ment in red.

2. Distributional fit. We begin with a normal distribution as the candidate probability distribu-
tion. We construct a probability plot to graphically assess the normality assumption. If the
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data are normally distributed, the theoretical and sample quantiles should fall on a straight
line.

Next, we conduct an Anderson-Darling test to test whether there is evidence that the data
are not normally distributed. We calculate the p-value to quantify how extreme our observed
data are if the data are truly normally distributed; small p-values would suggest a deviation
from normality.

The probability plot does not show any obvious deviations from normality (Figure 1.3); the
Anderson-Darling p-value is 0.38. From the handbook, “as the p-value is greater than 0.05,
we would say that there is not significant evidence at the 0.05 level that the data do not come
from a Normal distribution” (Newcomer et al., 2012). Hence, we assume normality and
carry on.

Figure 1.3: Probability plot for n = 10 closing time measurements; Anderson-Darling p = .38.

3. Tolerance bound calculation. Next, we calculated a tolerance bound using the normal
distribution to assess “Are we 95% certain that at-least 99.9% of the unit population will
yield a response greater than the threshold 34s?”

From Figure 1.4, we see that the estimated 99.9th percentile is 27s, with 95% tolerance bound
33s. The tolerance bound is less than the CD requirement, and the tolerance ratio is > 1, so
we assume margin is sufficient.

Comparison to truth. In this hypothetical example, we generated the data and thus know the
correct percentile value. In Figure 1.5, the true data generating model is plotted, illustrating that
margin is actually insufficient in this example. The QMU procedure failed to detect and account
for model misspecification, leading to anti-conservative and incorrect inferences.
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Figure 1.4: Fitted distribution, 99.9th percentile estimate (Q), 95% tolerance bound (TB), and
performance requirement (PR) for the n = 10 observations. The distance between the TB and
requirement (CD) suggests we do not have evidence of a margin insufficiency.

While this example may be hypothetical, such analysis mistakes occur in practice. Recent
QMU analyses include statements such as, “There is 95% confidence that 99% of the population
will pass” when 1/40 failed; and “99.999% of the population lies above the [requirement] with
95% confidence” when n = 150.

1.2 Perceptions of statistics in PhysSim QMU

In the above example, the PhysSim QMU procedure produced incorrect inferences in the example
above for two key reasons:

1. The distributional fit techniques were ineffective at detecting model misspecification.

2. The tolerance interval estimate involved extrapolation far outside the range of the collected
data, but statements about margin sufficiency did not address model form uncertainty.

The analysis was model-driven, rather than data-driven, and we clearly cannot validate models
in the tails without data in the tails. In the sections below, we describe common misconceptions
associated with distributional fit techniques and tail extrapolation that lead to such failures of Phys-
Sim QMU in practice.
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Figure 1.5: True data generating model with vertical line at the true 99.9th percentile (black) and
the CD requirement (red). The true percentile exceeds the requirement, and margin is insufficient.

Misconceptions about distributional fit techniques

The problems associated with using probability plots and goodness of fit tests for model validation
are well-understood and well-documented. Interpretation of probability plots can be subjective
(Loy et al., 2015); is sensitive to outliers (D’Agnostino and Stephens, 1986); and, most importantly
for tolerance intervals, highlights the center of the distribution rather than the tails (Scholz, 2005).
Distributional goodness of fit tests are even more problematic. D’Agnostino and Stephens (1986)
described goodness-of-fit tests as differing from most hypothesis tests in that “it is usually hoped
to accept the null hypothesis and proceed with other analyses as if it were true.” In 1935, Fisher
wrote, “For the logical fallacy of believing that a hypothesis has been proved to be true, merely
because it is not contradicted by the available facts, has no more right to insinuate itself in statistical
than in other kinds of scientific reasoning. Yet it does so only too frequently” (Fisher, 1935). In
application, goodness of fit tests regularly fall prey to this logical fallacy, which can have severe
implications for reliability estimation using parametric statistics. Accepting a parametric model
just because the model cannot be disproved using data “can lead to disastrous results” when making
inferences about tail behavior (Hughey, 1991).

However, this logical fallacy is sometimes overlooked in QMU applications. Examples include:

• “A statistician can conduct a statistical test to determine whether the observed skew in a
random sample is too large to be due to chance... A statistician can also test for kurtosis...
In the absence of outliers, bimodality, skewness, and kurtosis, a statistician can determine
whether the measurements, or transform of the measurements, are adequately described by
a Gaussian distribution” (Diegert et al., 2007).
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• “For a critical value α , a p-value greater than α suggests that the data follow that distribu-
tion” (Newcomer et al., 2012).

Misconceptions about tail extrapolation

In the example, we used a sample of size 10 to predict the point at which 1/10,000 units will fail
(on average). Predicting the behavior of distribution tails can be referred to as ‘tail extrapolation,’
because predictions are not data-driven but are solely reliant on the underlying model. Some
dangers of tail extrapolation for tolerance interval estimation are outlined in the quotes below:

• Probabilistic risk assessment handbook: “The analyst should not make assertions that are
highly dependent on the form of the distribution. For example, a sample of 10 observations
may be consistent with many possible distributions. An estimate of the 99.9th percentile
of the distribution would be a large extrapolation from the actual data, highly dependent
on the assumed form of the distribution. A confidence interval on this percentile would be
even worse, because it would give an appearance of quantified precision, when in reality the
distribution could have practically any form out in the tail” (Atwood et al., 2003).

• Los Alamos ONE vs. 1.0: “[Obtaining] a numerical estimate of reliability based on knowl-
edge of full probability distributions in conjunction with QMU would place great demands
on our ability to characterize uncertainties. In view of this, it is inevitable that there would
be pressure to adopt ‘short cuts’ by simply assuming the forms of PDFs or using PDFs that
are not based on some but inadequate supporting data. The response to such pressure would
make or break nuclear certification. No analysis that is based on speculation or that neglects
significant possibilities can lead to genuine confidence, but instead will frequently lead to
over-confidence or under-confidence, both of which carry severe costs” (Sharp et al., 2003).

• “Estimating tail parameters is analogous to estimating parameters ‘exterior to the data’ ...
Many times estimates are made by assuming the data is sampled independently from a para-
metric family. This can lead to disastrous results” (Hughey, 1991).

• “The tolerance interval... is not distributionally robust to even small deviations from normal-
ity” (Fernholz and Gillespie, 2001).

• “Ultimately, the extrapolation step is one of good faith and is not statistical in nature”
(Scholz, 2005).

Hahn and Meeker (1982) and Thomas (2015) also discuss the dangers of tail extrapolation for
predicting time to failure in industrial applications.

Engineers’ perspectives of tail extrapolation in QMU

We conducted interviews with Sandians to assess perceptions of tail extrapolation in QMU ap-
plications and how they use statistical model selection tools in QMU. Seven engineers at SNL
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in Albuquerque, New Mexico were recruited to be interviewed for the study. Participants were
recruited by emailing groups who frequently use QMU methodologies. Eligibility criteria were
participants at least 18 years old and employed by SNL for at least one year. All research was
approved by the SNL Human Subjects Board.

Methods. Participant interviews lasted between 20-30 minutes; interviews were audio-recorded
and transcribed. In the interview, participants were first asked about their experiences with quantifi-
cations of margins and uncertainties (QMU) for experimental data in their work. Then, participants
were asked about how they use probability plots and goodness of fit tests to evaluate distributional
form. Lastly, participants were asked about their perceptions of extrapolation from a statistical
model to estimate extreme percentiles (as is common in QMU), and whether goodness of fit tests
and probability plots inform whether the extrapolation is reasonable. Using the study transcripts,
we identified a set of themes and supporting evidence for the themes.

Results A broad range of QMU users were interviewed. Participants were involved in different
areas of the nuclear weapon mission space, including surveillance, production, and development
systems. Further, participants had a broad range of technical background in the statistical methods
being asked about; all users were familiar with the statistical methods, because they are tied to
the QMU methodology. While the users varied in their understanding of statistics, all participants
were in some degree responsible for interpreting and reporting out findings from QMU studies that
use these methods.

We identified three primary themes from the focus group. Specifically, participant responses
generally fell under the following themes:

Theme 1. Using QMU as an exercise to think about margin generates valuable information.
QMU was deemed useful for: helping think through the quality of available data; understand-
ing data in manufacturing and testing; evaluating performance in surveillance, including Annual
Assessment Reviews; and communicating with customers about observed performance. Going
through the QMU process was also deemed useful for understanding shifts or outliers in data, iden-
tifying subpopulations, and, ultimately, understanding variability to better understand the proba-
bility of exceeding requirements. The process was deemed easy to use to screen out performance
parameters with high margin.

Engineering (data) reviews were deemed a useful part of the QMU exercise. Participants noted
the need to understand what data are available, what the requirements are, and whether QMU is
realistic and feasible.

Theme 2. Extrapolation in QMU is a source of risk. In general, participants understood
that extrapolation from a parametric statistical model was a risky endeavor. Example participant
responses include: “we’re making predictions about events we haven’t seen yet” and “we really
havent collected any data points there yet.” Participants noted: there is rarely enough data to prove
or disprove modeling assumptions, outliers are always a concern, and that the risk associated with
assumptions must be articulated. However, one participant highlighted that briefings to customers
often do not include risks associated with assumptions. The perceived magnitude of risk seemed
to vary between participants. Example participant responses that down-played the risk include:
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“data in the tails tend to be similar” and statistical confidence is “necessary and sufficient” to
characterize uncertainty following a thorough engineering analysis. Further, many participants had
a good understanding that the level of rigor needed in an analysis depends on how much margin
exists. Specifically, high margin situations need less rigorous methods. One participant noted that
more qualitative tools may provide added-value for mitigating the risk of extrapolation.

Theme 3. Statistical tools for evaluating parametric distribution fit (Anderson-Darling good-
ness of fit tests and probability plots) are sufficient to identify a distributional model to use for QMU
extrapolation. Participants seemed to have good faith in goodness of fit tests and probability plots
for selecting a distributional form. Example participant responses include: these methods are the
‘gold standard’; ‘Minitab has functions that will identify a distribution for you’; and statisticians
can tell what distributional form data have (paraphrased). There was often a lack of skepticism
concerning statistical methods. The statistical tools were not related to the degree of extrapolation
being done (i.e. the percentile and desired confidence level); for instance, no one was concerned
about extrapolating a 99.5th percentile with 95% confidence using a sample size of n = 65.

From these qualitative interviews, we learned that more intuitive statistical tools are needed to
communicate the risk of extrapolation when modeling experimental data.

1.3 Objectives of report

In this report, we highlight the risk associated with the current PhysSim QMU procedure, dis-
cussing both the likelihood and consequences of model misspecification. We then propose a path
forward for PhysSim QMU based on information integration. Specifically, we address the follow-
ing three objectives to highlight risk associated with PhysSim QMU processes:

1. Quantify model form risk: Quantify the consequences of model misspecification using a
scaling study (consequences).

2. Define model validation metrics: Develop improved model validation metrics (likelihood).

3. Propose information integration models: Explore potential solutions for relaxing stringent
model form assumptions through integrating multiple data sources (risk mitigation).

Because these three objectives represent distinct aspects of the project, we have structured the doc-
ument to group the objectives together. Specifically, we present methods, results, and discussion
for each of these objectives. In Section 2, we present the scaling study to quantify model form risk;
in Section 3, we present the model validation metrics to evaluate the likelihood of model misspec-
ification in the tails; and in Section 4, we outline a potential data integration framework for risk
mitigation.
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Chapter 2

Quantify model form risk

When estimating uncertainty in percentile estimates (tolerance bounds), there are two sources of
uncertainty to consider in analysis: uncertainty associated with model misspecification and sam-
pling uncertainty assuming the model is correct. Sampling uncertainty is conditional on the model,
but can be quantified for models that make various different parametric assumptions; naturally,
sampling uncertainty increases as models become less parametric (i.e., less restrictive), because
fewer assumptions can be leveraged to characterize the underlying population. In statistics, this
phenomenon is referred to as the bias-variance trade-off.

Sampling uncertainty is quantified when estimating statistical tolerance intervals, but model
uncertainty is frequently ignored, particularly in the SNL PhysSim tolerance interval methodology
(Newcomer et al., 2012). When highly parametric models are used (e.g. normal, Weibull, lognor-
mal), understanding the strength of the modeling assumptions can be achieved by examining the
performance of the parametric models when the model is wrong. In this section, we quantify the
impact of both sampling and model uncertainty on tolerance interval estimates.

2.1 Methods

To highlight the impact of model and sampling uncertainty on tolerance interval estimates, we
propose examining:

1. When the parametric model is misspecified, how does the true confidence compare to the
nominal confidence level?

2. When the parametric model is misspecified, how does the tolerance bound compare to the
true percentile?

The difference between the confidence level prescribed by a tolerance interval and that observed is
termed empirical reliability and will provide evidence for the first question. The mean difference
between the true percentile and the tolerance bound estimate is termed the percentile discrepancy
and this will provide evidence for the second question. Using these two metrics, we quantify
model and sampling uncertainty in tolerance bound estimates across different sample sizes, target
percentiles, confidence levels, and underlying models.
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To understand empirical reliability, note that tolerance intervals have a confidence level associ-
ated with them, say 95%. This confidence level can be interpreted as the frequency with which the
interval contains the true parameter assuming the assumptions of the statistical method are met.
A common statistical assumption is that the selected statistical model is correct; if the model is
wrong, we are no longer guaranteed that the 95% confidence interval will contain the true param-
eter 95% of the time. Tolerance intervals are particularly sensitive to model form; for instance,
assuming a model that is too light-tailed will produce under-conservative results (true confidence
less than 95%).

For this study, we generate data assuming that the true underlying model is known. In practice,
with experimental data, we do not know the true model that generated the data resulting in model
uncertainty; this study is intended to show the sensitivity of tolerance bounds to model form as-
sumptions. To accomplish this we take random samples from a known distribution and estimate
a tolerance interval assuming a mis-specified model. We then compare the estimated tolerance
interval to the true percentile; and compare the nominal confidence level for a large ensemble of
random samples to the estimated coverage of the true percentile under the correct model.

Study design

We designed a study to explore the metrics. We assume a normal model when calculating the
tolerance interval, but vary the true underlying model, considering the correct normal model as well
as two incorrect alternative models: a t-distribution with 5 degrees of freedom (T5) and a mixture of
2 normal distributions. The normal distribution reflects a ‘light-tailed’ distribution, t-distribution is
intended to reflect a heavy-tailed distribution, and the normal-mixture a multi-modal distribution.
The normal-mixture examples was selected to reflect a real application to computational simulation
data from a launch safety device on a nuclear weapon, but we omit details of the specific application
herein.

We consider the following design variables throughout the simulation study:

• different sample sizes: n = 4,6,8, ...40.

• 4 different quantiles p = 0.90,0.99,0.999,0.9999.

• 4 confidence levels γ = 0.5,0.9,0.95,0.99.

We generate one dataset (a large ensemble of random samples) for each setting (distribution and
sample size) and calculate the true confidence interval coverage and the difference between the
average tolerance intervals and true percentiles.
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2.2 Results

In this section, we explore the risk of model form assumptions on two relevant distributions that
highlight practical issues with model form assumptions in sparse data situations. Before high-
lighting the risks in making model form assumptions, the appropriate application of the normality
assumption to normally distributed data is shown to set a baseline for the performance metrics. Al-
though normality is not assumed for all analysis, these examples are meant as a general illustration
of the risks associated with making model form assumptions.

2.2.1 Correct model form assumption: Normal distribution

To illustrate our approach to characterizing the performance of model form specific percentile
estimation, tolerance intervals (TIs) based on the normal distribution are applied to normally dis-
tributed data N (0, 1). For this illustration 30,000 combinations of samples from the normal distri-
bution are considered for each number of sample points considered. Each combination of samples
is tested with the Anderson-Darling (AD) test at a 0.05 p-value to determine if the hypothesis that
the data comes from a normal distribution can be rejected. Figure 2.1 shows the type I error rate
of the AD test applied to datasets from a normal distribution. The type I error rate is defined as
the probability of rejecting the hypothesis that the data comes from a normal distribution when the
normal model is correct. The type I error rate appears to operate around at a 0.05 rejection rate,
which is expected due to the data being truly normally distributed and the hypothesis test rejecting
at a 0.05 level. If the hypothesis that the data is normally distributed is not rejected, a one sided
tolerance intervals is fit to the data and compared to the true percentiles of the standard normal
distribution.
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Figure 2.1: Type 1 error rate scaling of Anderson-Darling test for normality applied to data from
standard normal distribution at a 0.05 p-value

Performance metric results for the normal distribution based tolerance intervals (TI) applied to
normally distributed data are shown in Figure 2.2 and 2.3. The empirical reliability is the differ-
ence between the prescribed confidence and the observed. Figure 2.2 shows how the performance
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metrics scale with the number of sample points for 99.9% coverage tolerance intervals with differ-
ent confidence levels. Ideal empirical reliability occurs when the observed confidence equals the
specified confidence level. It appears that the observed results are approximately ideal given the
limited number of repetitions. Discrepancy in the percentile estimates is expect to approach zero
as the number of samples increases. A trend in the percentile discrepancy towards zero is evident
and the magnitude of the discrepancy for small sample sizes scales with the magnitude of the esti-
mated percentile. Figure 2.3 then similarly shows the scaling of the performance metrics for 95%
confidence tolerance intervals with different coverage levels. Again, the ideal reliability would be
achieved if the observed and prescribed confidence levels matched, which appears to occur for the
normally distributed data. The percentile discrepancy appears to scale in a manner consistent with
Figure 2.2, and the percentile discrepancy has a positive trend with the magnitude of the confidence
level. Thus, when applying these performance metrics, it is hoped that the prescribed confidence
level is matched, the percentile discrepancy should asymptote to zero as the number of samples
increases, and the magnitude of the percentile discrepancy should increase with higher estimated
percentiles and confidence levels (but with a stronger trend with respect to percentiles).

Summarizing these results, when the normal model is correct, normal tolerance intervals work
well for bounding distribution percentiles, as expected.

number of points

ty
pe

 1
 e

rro
r r

at
e

PD
F

characteristic

co
nfi

de
nc

e

number of data points

pe
rc

en
til

e 
di

sc
re

pa
nc

y

number of data points

co
nfi

de
nc

e

pe
rc

en
til

e 
di

sc
re

pa
nc

y

Figure 2.2: Scaling of mean performance metrics across sample size for 99.9% coverage tolerance
intervals (assuming normality) for data from a standard normal distribution. Prescribed confidence
levels of the tolerance intervals (dashed lines) are compared with the observed confidence (empir-
ical reliability) in the left plot, and the percentile discrepancy is shown in the right plot. All values
are statistical means over a large population of random samples.

2.2.2 Incorrect model form assumption: Tail sub-population

The first distribution used to illustrate issues with tolerance interval robustness to model form
uncertainty appears roughly normal, but contains a subpopulation in the right tail, as shown in
Figure 2.4. As an illustration of the impact of the tail subpopulation, the 99.9 percentile of the
distribution is compared with that of a normal distribution fitted to the mean and standard deviation
of the distribution. For each desired sample size, 20,000 combinations of samples are taken from
the distribution and normal distribution based tolerance intervals are fitted to each combination.
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Figure 2.3: Scaling of mean performance metrics across sample size for 95% confidence tolerance
intervals (assuming normality) for data from a standard normal distribution. Prescribed confidence
levels of the tolerance intervals are compared with the observed confidence (empirical reliability)
in the left plot, and the percentile discrepancy is shown in the right plot. All values are statistical
means over a large population of random samples.
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Figure 2.4: Distribution with right tail subpopulation (red solid line) and 99.9 percentile (red
dashed lines) compared with 99.9 percentile based on equivalent normal distribution.

The sample datasets are filtered using the AD normality test to ensure only datasets that would
not be rejected are used to determine the tolerance intervals’ performance. Figure 2.5 illustrates
how the statistical power of the AD test with a 0.05 p-value scales with the number of sample data
points. Statistical power is defined as the probability of rejecting the hypothesis that the data comes
from a normal distribution when the true distribution is not normal and, in this case, is the normal
mixture distribution. With small sample sizes the AD test rejects few of the incorrect hypotheses
for this example, but the power grows with the number of sample points, as expected. With datasets
of 18 samples, it is expected that around 50% of the time the dataset will be determine to not be
from a normal distribution.

To get a more complete picture of how the performance of normal tolerance intervals scales
for this underlying distribution, Figure 2.6 and 2.7 demonstrate the performance scaling across a
range of confidence levels, distributional coverages, and number of sample points. The empirical
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Figure 2.5: How the rejection rate of the AD test at a 0.05 p-value, scales with number of sam-
ple points for random combinations of datasets taken from the non-normal population shown in
Figure 2.4.

reliability of all confidence levels for 99.9% coverage TIs performed best with sparse data, but still
did not achieve ’nominal’ coverage. The confidence performance quickly reduces as additional
data points are added until it starts to asymptote to zero confidence when the sample size is around
ten to twelve points. With ten to twelve sample points, the statistical power plot indicates that
around 70% of datasets are not rejected by the AD normality test. In sparse data situations, the
99.9 percentile estimates are typically overly conservative on average, except for the estimates
based on 50% confidence. As the number of sample points grows, the percentile discrepancy
quickly becomes negative (anti-conservative). The 99.9/50 TIs are underestimated for all sample
sizes.

Within the coverage scaling (Figure 2.7), the impact of the main distribution on the 90% cover-
age TI is evident. Because the subpopulation made up less than 10% of the total PDF, the normal
distribution approximation TI performed much better for the 90/95 TI than for the higher percentile
based TIs that are located on the tail of the subpopulation. This impact is notable in both the em-
pirical reliability and the percentile discrepancy. The normality assumption is nonconservative
for all percentiles considered, but performs better for less extreme percentiles located not on the
subpopulation.

Summarizing the results, if a subpopulation exists in the data and enough samples were not
taken to adequately reject the normal model, normal model inferences will be anti-conservative.

2.2.3 Incorrect model form assumption: T5 distribution

The second test distribution used to illustrate issues with tolerance interval robustness to model
form uncertainty was a T distribution with five degrees of freedom (T5) whose position and scale
(similar to normal distribution mean and standard deviation) are uncertain. The T5 distribution
has a shape close to a normal distribution, but has thicker tails. Figure 2.8 compares the standard
T5 distribution with a standard normal distribution. Looking at the 99.9 percentiles illustrates the
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Figure 2.6: Observed reliability (left plot) and percentile discrepancy (right plot) of the normal
99.9% coverage tolerance intervals applied to data from the distribution with a subpopulation on
the right tail (Figure 2.4). Trends depending on different prescribed confidence levels (50%, 90%,
95%, and 99%) are shown as solid lines with dots and corresponding prescribed confidence levels
are shown as dashed lines. Values shown are average values from 30,000 random combinations,
but only combinations not rejected by AD test at a 0.05 p-value are considered.

greater weight in the tails of the T distribution.

The AD test with a 0.05 p-value was again used to screen 30,000 combinations of data points
sampled from the T5 distribution to get the empirical reliability and percentile discrepancy esti-
mates. The power of the AD normality hypothesis test is shown in Figure 2.9. Due to the similarity
of the T5 and normal distribution (aside from the distribution tails), the power of the AD test is sig-
nificantly reduced for small sample sizes. With a sample size of 30, the hypothesis that data from
a T5 distribution was actually from a normal distribution was only rejected for ≈20% of datasets.

Figure 2.10 and Figure 2.11 show how the performance of normal distribution based TIs to
estimate percentiles of the T5 distribution scales across number of samples with different coverage
and confidence levels. Just as was noted for the distribution with a tail subpopulation, the normal
distribution based TIs have their best coverage performance with sparse data and performance
then trends down as additional data points are included. The rate of decrease in the TI confidence
performance is slower than was observed for the distribution with a tail subpopulation. The 50%
confidence 99.9% coverage TI again is anti-conservative on average for all sample sizes and all TI
confidence levels considered trend to a negative percentile discrepancy.

The scaling of the empirical reliability and percentile discrepancy with coverage level also
scales in a similar fashion to the distribution with a subpopulation, but with more gradual slopes.
The exception to this is the 90/95 TI which performs at the specified confidence level for the sample
sizes investigated. This is likely due to the T5 and standard normal distributions being similar for
percentiles not far into the tails.

Summarizing the results, it is often not possible to detect distribution tails that are heavier than
the normal distribution using statistical goodness of fit tests, but differences in distribution tails
have important impacts when predicting tail behavior.
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Figure 2.7: Observed reliability (left plot) and percentile discrepancy (right plot) of the normal
95% confidence tolerance intervals applied to data from the distribution with a subpopulation on
the right tail (Figure 2.4). Trends depending on different prescribed coverage levels (90%, 99%,
99.9%, and 99.99%) are shown as solid lines with dots and corresponding prescribed confidence
levels are shown as dashed lines. Values shown are average values from 30,000 random combina-
tions, but only combinations not rejected by AD test at a 0.05 p-value are considered.

2.3 Discussion

Although it is known that tail extrapolations are sensitive to model form assumption, alternative
procedures are not well developed for sparse data situations. In engineering applications where
QMU type questions are being asked, analysts often rely on the most accessible tool, model form
assumptions. Results in section 2.2 were generated to help quantify the potential risks being taken
when making model form assumptions to perform QMU. Assuming normality is a common en-
gineering assumption, so this assumption was applied to realistic distributions that deviate from
normality, which engineers are likely to encounter in real applications. Grounding the two per-
formance measures, observed reliability and percentile discrepancy, on the performance of the
normality model form assumption for normal data provides both insurance of the algorithms im-
plementation and a baseline for the optimal values for the metrics.

Applying AD goodness of fit tests at the significance level suggested within Newcomer et al.
(2012) to the test problems illustrated issues with this method in sparse data situations. The per-
formance of the normal tolerance intervals applied to both test problems was poor, and a tradeoff
between confidence and bias in the percentile estimates was apparent. Incorrect model form as-
sumptions act more conservatively in their confidence of truly bounding the desired percentiles
when data is most sparse, but this is due to the large overestimates in the percentiles, as shown in
the percentile discrepancies. Specifically, with sparse samples, variance estimation is challenging
and, thus, uncertainty in the variance under the normal model dominates uncertainty in this case.
As data becomes less sparse, over-prediction of percentiles appears to asymptote quickly as more
data is added. The negative impact of the model form assumptions is evident in the poor confidence
in percentile estimates due to negative percentile discrepancies as additional data is added. Even
with sparse samples, the empirical reliability is far from the nominal statistical confidence (as ex-
pected). Using as much data as possible allows the goodness-of-fit tests the best chance of correctly
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Figure 2.8: T5 distribution (red line) compared to normal distribution equivalent (green line). 99.9
percentiles of the distributions are shown as dashed lines.
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Figure 2.9: How the rejection rate of the AD test at a 0.05 p-value, scales with number of sample
points for random combinations of samples taken from non-normal population shown in Figure 2.8.

identifying a poor model form assumption, does not significantly increase the expected discrep-
ancy from what would be experienced for most sparse data levels, but does greatly increase the
risk associated with the confidence prescribed. However, goodness of fit tests will almost always
reject the distributional form assumptions in large samples, given that data never exactly follow
prescribed distributions, even though those distributions are often reasonable approximations.

Comparing the performance of the incorrect model form assumption on the two test distri-
butions considered, it appears that the normality assumption performs worst for non symmetric
distributions. The decline in the observed reliability for the distribution with a subpopulation in
one of its tails was significantly worst than for the systematic T5 distribution. On the other side
of this coin, the normality assumption appears to perform relatively well for more central and
symmetric portions of the distributions. This knowledge may prove useful for other engineering
activities such as calibration, where greater emphasis is placed on capturing central behaviors such
as those studied by Romero et al. (2013).
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Figure 2.10: Observed reliability (left plot) and percentile discrepancy (right plot) of the normal
99.9% coverage tolerance intervals applied to data from a T5 distribution. Trends across sample
size depending on different prescribed confidence levels (50%, 90%, 95%, and 99%) are shown
as solid lines with dots and corresponding prescribed confidence levels are shown as dashed lines.
Values shown are average values from a large number of combinations, but only combinations not
rejected by AD test at a 0.05 p-value are considered.

The performance plots for the two examples provide analysts with a simple visual assessment
of the potential impact of poor model form assumptions commonly employed. For example, if
the analyst’s true distribution was the distribution with a subpopulation in its tail, around 56%
of the time 20 points randomly taken from that distribution would be assumed to be normal and
not proven otherwise. The 99.9% coverage/99% confidence tolerance intervals based on those 20
points would then bound the 99.9th percentile around 10% of the time and would have an estimate
discrepancy around 4 units under the true percentile value.

Another finding from this study is that 50% confidence should be avoided. In some applica-
tions, analysts prefer 50% confidence because fewer samples are required. However, 50% con-
fidence in a percentile is essentially just a point estimate of the percentile and ignores sampling
uncertainty. This study highlighted the consequences of ignoring that uncertainty in terms of very
poor empirical reliability and large percentile discrepancies. Hence, we recommend that 50%
confidence not be used as the confidence level for tolerance intervals.

One means of overcoming the risk associated with model form assumptions is to change the
type of QMU questions being asked in sparse data situations. Instead of asking for margin ratio
estimates based on extreme percentiles, the amount of data available could dictate the percentiles
being estimated. Where perviously the margin ratio based on the 99.99 percentile of a performance
characteristic would be requested from a dataset containing 50 points, what if a percentile less than
1/50 was used to report the margin ratio? Segalman et al. (2017) published an approach to QMU
where the data was first shifted so that a small percent of the distribution was beyond the require-
ment, and the necessary shift was referred to as the margin. Probabilities of failure were then based
on the margin shifted data, resulting in estimates largely insensitive to model form assumptions.
Ultimately, the questions being posed by decision makers would need to accommodate this change
in mindset before QMU approaches could be altered.
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Figure 2.11: Observed reliability (left plot) and percentile discrepancy (right plot) of the normal
95% confidence tolerance intervals applied to data from a T distribution with 5 degrees of free-
dom. Trends depending on different prescribed coverage levels (90%, 99%, 99.9%, and 99.99%)
are shown as solid lines with dots and corresponding prescribed confidence levels are shown as
dashed lines. Values shown are average values from a large number of combinations, but only
combinations not rejected by AD test at a 0.05 p-value are considered.
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Chapter 3

Define model validation metrics

We construct alternative and improved metrics for communicating model form risk when con-
sidering whether to estimate distribution tails from statistical models to characterize rare event
probabilities. Specifically, we use statistical extreme value methods to communicate risk associ-
ated with tail characterization for assessing high reliability requirements. Statistical extreme value
theory is concerned with making inferences about extreme observations (Coles et al., 2001) and
thus provides a suite of tools relevant for reliability analysis with high requirements. We propose
graphical aids and statistical metrics to address the question of when enough data is available to
validate a parametric model for extreme percentile estimation. The proposed tools parallel proba-
bility plots and goodness of fit tests but directly explicate the risk being absorbed in model-based
extrapolation.

To develop an alternative to goodness of fit tests, we develop a validation metric that is di-
rectly tied to validation of physics-based computational simulations (AIAA, 1998; Oberkampf and
Barone, 2006; Rebba and Mahadevan, 2008). While the precise definition of model validation
is debated in computational simulation applications, we will define validation as, “the process of
determining the degree to which a model is an accurate representation of the real world from the
perspective of the intended uses of the model” (Oberkampf and Barone, 2006). In short, valida-
tion examines whether a model’s prediction accuracy is good enough for the intended application.
Statistical model validation is no different from computational simulation validation; therefore, to
validate statistical models for the intended application, i.e. tail characterization, we should pro-
vide evidence that we can accurately capture observed tail behavior with the model. We argue that
model validation in statistical modeling should not be treated differently from validation in com-
putational simulation modeling and provide metrics aimed at bridging the gap between current
treatments of model validation in these fields.

3.1 Methods

3.1.1 Percentile and tolerance interval estimation

To define the tail characterization problem, we consider estimation of an extreme percentile of
a distribution; in practice, this percentile of interest may correspond to a reliability or safety re-
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quirement. For a component within a system, suppose the component has a requirement that a
performance measure must be less than a performance threshold τ with reliability r. That is, the
Qr percentile of the performance metric distribution must be less than τ . (Throughout, we con-
sider an upper performance threshold for sake of simplicity, but all methods apply to both upper
and lower thresholds.) To characterize confidence (or, conversely, sampling uncertainty) in per-
centile estimates, we use statistical tolerance intervals (Krishnamoorthy and Mathew, 2009). We
first review percentile and tolerance interval estimation, before describing proposed metrics for tail
estimation.

Percentile and tolerance interval estimation

Without loss of generality, we consider percentile estimation for the upper-tail of a probability dis-
tribution. Further, we assume all performance measures are independent and identically distributed
(i.i.d.), a common assumption in practice. Let X = {X1,X2, ...,Xn} denote an i.i.d. random sample
from a population. Given a set of data X , we can estimate the distribution of X , denoted FX , and
then calculate percentiles from this distribution. A percentile of a distribution Qr is defined as
the value of the distribution for which r percent of observations are below. Mathematically, Qr is
defined as P(X < Qr) = r.

In practice, the distribution FX and percentiles Qr are estimated from finite samples and con-
tain sampling uncertainty. We denote estimates of FX and Qr as F̂X and Q̂r. Statistical tolerance
intervals can be used to quantify sampling uncertainty in a percentile Q̂r. Tolerance intervals can
be one- or two-sided; we consider only one-sided tolerance intervals in this paper, often referred to
as tolerance bounds, because, in practice, we are typically trying to find a bound on a performance
measure. Mathematically, a one-sided (p,1−α) tolerance bound Q̂p,α is defined as:

PX

{
PX
(
X ≤ Q̂p,α |XXX

)
≤ p
}
= 1−α, (3.1)

where p is a percentile, α is the confidence in the estimate of the percentile. Heuristically, a
one-sided upper statistical tolerance bound is simply an upper confidence bound on a percentile.

Non-parametric estimation

With sufficient data, assumptions about the underlying model FX are not necessary for percentile
and tolerance interval estimation. Percentiles are estimated using quantiles of the observed data.
Non-parametric one-sided tolerance intervals can be constructed based on exact distributions of
order statistics (Scholz, 2005; Krishnamoorthy and Mathew, 2009; Wilks, 1941; Hutson, 1999). To
help gauge how much data is sufficient for non-parametric estimation, we use the minimum sample
size requirements for non-parametric tolerance interval construction. Specifically, to construct a
(p,1−α) nonparametric interval, n must satisfy

n≥ log(α)

log(p)
(3.2)
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where n is the sample size, p > 0.5 is the percentile of interest, and 1−α is the confidence level
(Wilks, 1941). Non-parametric tolerance intervals make no assumptions about the shape of the un-
derlying distribution at the cost of requiring very large sample sizes for construction. For instance,
bounding a 99th percentile with 95% confidence requires n ∼ 300; bounding a 99.9th percentile
with 95% confidence requires n∼ 3,000.

Parametric estimation

When the constraint in Equation 3.2 is not met, extrapolation based on a statistical model is com-
monly used to estimate percentiles and tolerance intervals, i.e. Xi ∼FX , where FX is an assumed
probability model for X . In engineering applications, common choices for FX are the normal,
Weibull, and lognormal distributions (Atwood et al., 2003; Krishnamoorthy and Mathew, 2009;
Newcomer et al., 2012). Parameters of the distributions are estimated using statistical methods,
such as maximum likelihood estimation or method of moments. After fitting the model, percentiles
are estimated based on quantiles of the fitted model F̂X .

Extreme-value methods

Often, it is difficult to find a parametric distribution that fits the entire observed dataset well. To
relax the assumptions of parametric approaches, extreme-value methods can be applied, where only
the m largest observations from a dataset are used to make inference about the upper tail behavior.
Extreme-value methods are commonly used to estimate extreme percentiles and corresponding
tolerance intervals (Hughey, 1991; Coles et al., 2001; De Haan and Ferreira, 2007; Gomes and
Guillou, 2015). The basic notion behind this approach is that, if we are interested in inference about
the tails, then only the tails should be used to make inference. To implement tail-based methods,
the data are censored at some threshold u and inferences about the tails of the distribution of X are
based on estimating the distribution Y = X −u|X > u. Extreme value methods are inherently less
parametric and thus more robust than the parametric approaches described above, again at the cost
of efficiency. A common model for distribution tails is the generalized Pareto distribution (referred
to as the ‘peaks over thresholds’ method) (Coles et al., 2001). The distribution function for the
generalized Pareto distribution (GPD) is:

F(y) = 1− (1+ yγ/σ)−1/γ (3.3)

where γ 6= 0 and σ > 0 are shape and scale parameters, respectively, and Y has support > 0 if γ > 0
and [0,−σ/γ] if γ < 0. If γ = 0, F(y) = 1− exp(−y/σ). Other more common distributions, such
as the normal, Weibull, or lognormal distributions, can also be used to model distribution tails.
There is a clear bias-variance trade-off involved in selecting how much data to use to model the
tails, i.e. selection of u; choosing u too large will result in very little data being used for estimation,
while choosing u too small will result in data further from the tails influencing the tail fit.
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3.1.2 Motivating example: QMU for launch safety device

To illustrate practical challenges associated with tail characterization, we consider an example
motivated by quantification of margin and uncertainty (QMU), a framework for evaluating system-
level nuclear weapon performance (e.g. reliability and safety) by rolling-up component level mar-
gin estimates (Pilch et al., 2011; Newcomer, 2012). Given a reliability requirement r, the estimated
rth percentile of the performance distribution (Q̂r) must be sufficiently far from the requirement τ ,
accounting for uncertainty (Figure 3.1). In QMU, margin is defined as the distance between the
percentile estimate Q̂r and requirement τ; (sampling) uncertainty in the percentile estimate is mea-
sured through a tolerance interval Q̂r,α . We assume the requirement τ is fixed and known. As the
demand for QMU using experimental data increases, a common question is when enough data ex-
ists to reliably estimate a percentile Qr and a tolerance interval Q̂r,α . More precisly, when can we
feel confident that a statistical model FX is valid for estimating a percentile and tolerance interval?

Figure 3.1: Illustration of a percentile estimate Q̂r and a one-sided 95% confidence bound on the
percentile estimate Q̂r,.95. The margin M to the requirement τ is the distance between the bound
Q̂r and the requirement threshold τ . Using this margin-based approach, if Q̂r,.95 is less that τ , then
we have at least 95% confidence that the requirement is met under the assumed statistical model.

As an example, we consider a hypothetical launch safety device on a missile. Suppose the
component has a requirement to close within 23.5s of launch with 99.5% reliability; that is, we aim
to estimate the 99.5th percentile of the closing time (CT) distribution to find evidence supporting
that the component can meet the τ = 23.5s requirement. The component is tested at two different
settings: hot and cold temperature; cold CT is expected to be more variable due to increased
friction. From both temperature settings, we have n = 100 closing time measurements (Figure
3.2); we refer to these two performance outcomes as hot CT and cold CT. While all data used in
this manuscript are simulated, the examples are motivated by real but proprietary examples.

Both distributions look reasonably symmetric and bell-shaped; in such situations, normal dis-
tributions are commonly used as a probability model for data. Using the normal distribution to
estimate a 95% confidence interval on the 99.5th percentile (99.5/95 tolerance interval), the esti-
mated tolerance interval for hot CT is 22.8s and for cold CT is 23.3s. Therefore, based on the
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Figure 3.2: Histograms of the two simulated datasets, n = 100.

normal model, we have margin to the τ = 23.5s requirement (though not ample margin).

To determine whether the normal model is a good fit to these data, we use probability plots and
goodness of fit tests, which are standard statistical tools for checking distributional fit (D’Agnostino
and Stephens, 1986; Montgomery et al., 2009). Probability plots, often called quantile-quantile
(QQ) plots, are simply plots of the estimated versus empirical quantiles of the data. The estimated
quantiles are calculated under a statistical model (in this case, the normal distribution). If the
model is correct, these plotted percentile pairs should form a line, within the uncertainty of the
percentile estimates. Confidence intervals can be placed around this line to reflect uncertainty in
the model fit. Probability plots for these data are displayed in Figure 3.3. For hot CT, the normal
model appears to be a good fit for the data, For cold CT, there is some evidence of poor model fit
in the lower tail of the data, though the tails are still within the point-wise confidence intervals; the
lower-tail appears ‘heavier’ than would be predicted under the normal model (i.e. sample quantiles
are greater than model predicted quantiles).

Figure 3.3: Probability plots for hot CT (left) and cold CT (right).
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We then apply a distributional goodness of fit test to determine whether there is evidence of
lack of fit for the normal model. Traditional statistics goodness of fit tests for distributional form
(Stephens, 1974) are formulated based on the hypotheses:

H0 : The model is a good fit for the data.
HA : The model is not a good fit.

Differences between the empirical distribution of the data and the predicted distribution under the
model are used to construct test statistics to provide evidence against the null (Stephens, 1974); the
test statistics are then transformed into p-values and the null hypothesis is rejected when p < .05
or p < .1. A commonly-used goodness of fit test in QMU applications is the Anderson-Darling
(AD) test (Razali et al., 2011), because this test weights the distribution tails more heavily than
other goodness of fit tests (such as Shapiro-Wilk or Kolmogorov-Smirinov). Applying the AD test
to our data, we test the null that the normal model is a good fit to the data versus the alternative
that the normal is not a good fit. The p-value for hot CT is .19 and the p-value for cold CT is .22.
Therefore, we fail to reject the null hypothesis and conclude that we do not have evidence of lack
of model fit for either performance measure.

No evidence of lack of model fit is a critically different statement than evidence of model fit.
Hence, this goodness of fit tests addresses the question, ‘Is there evidence that my parametric
model is a bad fit to the observed data?’ However, this test does not address model validation
for percentile estimation, which pertains to ‘Is the model sufficiently accurate for predicting tail
behavior?’ Because these datasets were simulated, we know the true answer to this question. Hot
CT was generated from a normal distribution, while cold CT was generated from a t distribution
with 5 degrees of freedom (denoted t5). These distributions are plotted in Figure 3.4, illustrating
the heavier-tails of the t5-distribution relative to the normal. The true 99.5th percentiles for these
distribution are 22.6s and 24.0s. Hence, hot CT has margin to the τ = 23.5s requirement while
cold CT does not. In fact, the failure rate for cold CT would be around 1%, doubling the .5%
requirement. Underestimating the failure rate by a factor of 2 can have large implications when
reliability estimates are rolled-up into system-level reliability models, and therefore the normal
model was not an adequate approximation for predicting the 99.5th percentile for cold CT.

3.1.3 New metrics

In Section 3.1.2, we highlighted the failure of goodness of fit tests and probability plots to effec-
tively communicate uncertainty associated with the selected statistical model. We now propose
alternative metrics to illustrate that, without knowledge of the underlying probability distribution,
the credibility of percentile estimates depends: (1) how far out in the tails is the percentile of in-
terest and (2) how much confidence about the estimate is required. When the intended use of the
model is inferring tail behavior, we should consider:

1. Degree of extrapolation (Section 3.1.4): Is extrapolation outside the range of the observed
data occurring?
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Figure 3.4: Two parametric distributions used as examples. Solid line is hot CT (normal distribu-
tion) and dashed line is cold CT (t5 distribution); vertical lines correspond to true 99.5th percentiles
of these distributions.

2. Model fit in the tails (Section 3.1.5): How consistent are the observed tails of the data with
the fitted model?

3. Sensitivity to model choice (Section 3.1.6): How much do the tail estimates change when
the modeling assumptions are relaxed?

In the following subsections, we develop a suite of tools to answer these three questions.

3.1.4 Degree of extrapolation

First, we consider how far outside the range of the observed data we are extrapolating. To measure
extrapolation, we simply compare the observed sample size n to the sample size that would be
required for non-parametric tolerance interval construction (Equation 3.2):

φ =
log(α)

nlog(r)
. (3.4)

where n is the sample size, r is the percentile of interest and 1− α is the desired confidence
level. As seen in Figure 3.5, large sample sizes are required for full non-parametrics. This metric
provides a useful representation of how much extrapolation is occurring when predicting to the
tails. Further, the metric can also help the user understand the range of percentile estimates where
extrapolation is not occurring.
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Figure 3.5: The non-parametric required sample size divided by the true sample size n as a function
of the percentile of interest r at the 90% confidence level (dashed line) and 95% confidence level
(solid line).

3.1.5 Model fit in the tails

To assess the model fit in the tails, we use return-level plots as a supplement to QQ plots. Return-
level plots are a graphical tool from extreme value modeling (Coles et al., 2001) that examine the
fit of a statistical model to the tails of the data. The return-level plot is simply a plot of the model-
based percentile estimates and empirical percentiles as a function of the ‘return-level,’ denoted nr
for percentile r (Coles et al., 2001). The return-level nr is defined as the number of units for which
we would expect 1 failure to occur, nr = 1/(1−r). For instance, for a .99 reliability requirement, in
a population of size 100, only 1 failure is allowed. This translates the 99% reliability requirement
to a more intuitive ‘1 out of 100’ failure rate, where the return level is nr = 100. Typically, the
return-level is plotted on the log-scale.

The return-level plot is constructed as follows:

• For order statistics X(k) where k/n > .5, plot the empirical quantiles as a function of nr. Note
that only the observations in the ‘tail of interest’ are plotted; i.e., for an upper requirement,
only observations greater than the median are plotted.

• For r > .5, overlay a model fit-line using the predicted model-based quantiles as a function
of nr.

• Add the performance threshold τ and nr corresponding to the requirement r as reference
lines.

As with QQ plots, confidence intervals or posterior predictive intervals can be added to the return
level plot to visualize uncertainty in the model fit. Using the asymptotic distribution of the order
statistics, we can estimate the standard error which is used in turn to construct the confidence
intervals(?).
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Figure 3.6: Simple example comparing a return-level plot (left) to a QQ plot (right) for tail ex-
trapolation. A sample size of 20 is used to estimate the 99.5th percentile to demonstrate margin
to a requirement at 4. The extrapolation from a sample size of 20 to a population of size 200 is
evidence from the return-level plot.

An example is shown in Figure 3.6. By mapping percentiles onto more intuitive population
sizes, i.e. return levels, the lack of data in the tails with which to evaluate model fit is more
apparent. On the other hand, QQ plots examines how well all of the observed data match a model-
based prediction and are difficult to interpret for tail estimation (Scholz, 2005). Return-level plots
are more appropriate for assessing how the model prediction performs near the target of estimation,
an extreme percentile.

3.1.6 Sensitivity to modeling assumptions

Lastly, we construct a validation metric to provide evidence for our question of interest;“Does
the parametric distribution provide a sufficiently accurate estimate of the percentile of interest?”
To answer this question, we consider an approach in a similar vein as Diebolt et al. (2007), and
compare fully-parametric models (Section 3.1.1) to more flexible extreme-value models (Section
3.1.1). Diebolt et al. (2007) constructs a goodness of fit test to compare a two-parameter parametric
model to a GPD model, basing the test statistic on the difference between a percentile estimate
under the two models. Following Diebolt et al. (2007), we also construct a metric based on the
difference of a percentile under the two models.

Deviating from previous statistical approaches, we do not construct a goodness of fit test. That
is, we are not aiming to show lack of parametric model fit, but rather provide evidence that the
parametric model is a good fit, i.e. ‘validate’ the model. Specifically, we construct a validation
metric aiming to show that a parametric model gives sufficiently similar percentile predictions as a
more data-driven extreme-value model in the tails. This metric is similar in spirit to the ‘reliability
metric’ used in the model validation literature, which provides a measure of the ‘reliability,’ or
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probability of success, of a model based on observed experimental data (Rebba and Mahadevan,
2008). In the computational simulation literature, many metrics for model validation have been
developed to quantify model validity. (Mullins et al., 2016) differentiated two common categories
of validation metrics, based on whether uncertainties are primarily epistemic or aleatory. In our
application, the sources of uncertainty are both epistemic (sparse data and model form uncertainty),
and therefore validation metrics targeted toward epistemic uncertainty are most appropriate (for a
discussion of aleatoric metrics based on distributional shape comparison, such as the area metric,
see (Ferson et al., 2008)). Epistemic uncertainty validation metrics, such as the reliability metric,
aim to compare high probability regions between distributions (Rebba and Mahadevan, 2008).
Because we are interested in determining similarity in two percentile estimates, where uncertainty
is driven by epistemic uncertainty, a validation metric that compares regions of high probability
between percentile estimates is most appropriate.

Definition of metric

We now define the proposed metric. Consider two models: M1, which uses only the data in the
tails of the distribution (as in Section 3.1.1) and M2, which is a parametric model (as in Section
3.1.1). To assess the robustness of model M2, we examine whether M2 gives inferences that are
sufficiently similar to the less parametric and more data-driven M1. We use Bayesian inference to
construct a validation metric based on distances between the posterior distributions of the percentile
estimates under the different models.

Given data X , let Qk
r denote the estimated posterior distribution of percentile Qr under model

Mk, for k = 1,2. For notational convenience, we suppress r and simply refer to Qk and Q. Since
M1 is more conservative (makes fewer parametric assumptions) than M2, then we would want
to show that Q2 is sufficiently close to or greater than Q1 (for an upper requirement). A notional
depiction of the percentile comparison approach is shown in Figure 3.7. If both models are correct,
then, asymptotically, both models will provide estimates of Q that converge to the true value of Q.

Define RM1,M2 = Q1−Q2, representing the difference in percentile estimates under M1 and
M2. We can construct a posterior distribution on RM1,M2 to make inferences about the reliability
of M2 relative to the more flexible M1. To select model M1, we use the GPD model from Section
3.1.1, censoring the data at a point u and assume that X−u∼GPD. The GPD model was selected
to provide a flexible model for comparison to a fully parametric model using all collected data.

We use Bayesian inference (Gelman et al., 2014) to estimate the posterior distribution of Q1,Q2

and RM1,M2 given a set of outcome observations XXX . Bayesian inference is advantageous in this
setting, due to the ability to construct a prior distribution that defaults to conservative percentile
inferences with sparse data; frequentist inferential procedures, such as the bootstrap, could easily
be substituted for estimation, but in sparse data situations, such frequentist procedures can under-
estimate uncertainty and should be used with caution (Schenker, 1985; Bergquist, 2006; Scholz,
2007).

Fitting the parametric model (M2) using Bayesian inference is straightforward. We specify
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non-informative priors on the model parameters and update the model parameters using Gibbs or
Metropolis-within-Gibbs sampling, with the full process described in Appendix A. Fitting the GPD
model is more involved. Specifically, to fit the GPD model (M1), we construct prior distributions
such that, when data are limited, inferences about tail behavior will err on the conservative side.
Specifically, we restrict the GPD model space to infinite tailed distributions by assuming ξ ≥ 0; the
parameter ξ governs the tail behavior of the GPD model. We place weakly informative empirical
Bayesian priors on the model parameters to ensure model convergence; and also put a finite mass
on P(ξ = 0), which includes exponentially shaped right tails and encompasses many common
distributions such as the normal, lognormal, Weibull, and gamma distributions. We sample from
the posterior distribution of the model parameters using reversible jump MCMC. In appendix B,
we describe details of the Bayesian estimation procedure for the GPD model, as well as results
from a simulation describing the improved performance of the Bayesian GPD model relative to
frequentist maximum likelihood estimation. We also provide R functions for implementing this
metric as supplementary files. The posterior for RM1,M2 can be obtained by sampling from the
posteriors of Q1,Q2.

Inferences about the sensitivity of inferences to the selected model M2 can be based on sum-
mary measures from the posterior of RM1,M2 . We propose using pε = P(R > ε) as the model
sensitivity metric, where ε is a tolerance limit for the amount of acceptable error in the percentile
estimate. Heuristically, pε can be interpreted as the confidence that M2 provides a percentile esti-
mate that is within ε of the estimate under M1. Using this metric, we must show the model fit is
adequate for percentile estimation, rather than look for evidence that the model is inadequate (as
is the case with historical goodness of fit tests). The tolerance ε gives the user a ‘buffer’ for the
amount of acceptable error in the percentile estimate.

Another potential metric is simply comparing the tolerance interval estimates under M1 and
M2. If the difference between the tolerance interval estimates is sufficiently small, then we can
conclude that the models provide sufficiently similar percentile uncertainty measures.

These validation metrics are designed such that, in order to conclude that there is evidence that
the model is ‘valid’:

• Less data are required when we are willing to tolerate more error in the model predictions
(specified through ε);

• More data are required as the target percentile moves further out in the tails of the distribution
(p gets closer to 0 or 1), in order to compare model predictions to observed data in the space
where prediction will occur.

Neither of these desirable properties hold for distributional goodness of fit tests.

Performance of model sensitivity metric

We conducted a simulation study to assess how pε changes as a function of the percentile r and ε ,
assuming the underlying model for the data is known. We consider the same two data generating
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Figure 3.7: Posterior distributions for Q1 under parametric model (orange) and Q2 under more
robust model (purple) for a 99.5th percentile estimate based on n = 100 observations when the
model is correct (left) and incorrect (right). A kernel density estimate of the data distribution is
show in grey. (Left) M1 is correct and percentile estimates are very similar, but the robust model
has more uncertainty. (Right) M1 is incorrect, the less parametric model M1 gives a much higher
estimate of the percentile.

mechanisms that were used for the launch safety device example in Section 3.1.2: a normal dis-
tribution and t5 distribution. We compare the fit of the normal model M2 to the GPD model with
10% of the data censored. We simulated 1,000 different datasets of size n = 100 and estimated pε

for ε = {0, .1, ...,2} and for p = {.95, .99, .995, .999}.

In Figure 3.8, we plot the average pε over the 500 simulations as a function of ε , as well as
the probability that pε > .9 as a function of ε . The metric pε increases as ε increases and as p
decreases. When the data are generated from the t5 model, ε must be large (>> 2) to bound the
GPD model with the normal model +ε (with 90% confidence) when r > .95 (note that the 95th

percentile can be estimated from the n = 100 samples without extrapolation and that the t5 and
normal 95th percentiles are quite similar). The conservatism in the GPD model is evident and
is expected, given that priors for the GPD model were defined to default to more heavy-tailed
distributions when data are limited.

3.2 Results

In this section, we apply the proposed tools to the launch safety device QMU example from Section
3.1.2. Recall that we are aiming to estimate the 99.5th percentile for closing time, and calculate
corresponding 95% tolerance intervals, with the goal of demonstrating margin to a τ = 23.5s re-
quirement. We now apply the validation metrics detailed in Sections 3.1.3; specifically, we calcu-
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Figure 3.8: The probability of pε exceeding .9 as a function of ε when: (left) the normal model is
correct and (right) the t5 model is correct.

late the degree of extrapolation, examine model fit in the tails, and consider changes in percentile
estimation under the more robust tail-based model.

Degree of extrapolation. When n = 100 and α = .05 (95% confidence), extrapolation is
occurring beyond the 97th percentile (Figure 3.5). To estimate the 99.5th percentile with 95%
confidence, as in the Section 3.1.2 example, we would need n = 598 and hence a φ = 6 times
larger sample, suggesting a somewhat high degree of extrapolation.

Model fit in the tails. Return level plots for closing time are shown in Figure 3.9. For both
hot and cold CT, the normal model does not appear unreasonable for the data. However, unlike the
QQ plot, the return-level plot highlights the fact that we are using 100 units to predict performance
of nr = 200 units and hence inferences about the 99.5th percentile reflect extrapolation outside the
range of the data.

Validation metrics. We estimated the posterior distributions for the 99.5th percentiles of hot
and cold CT under the normal model (M2) and the GPD (M1). For the GPD model, we chose
u such that only the upper 10% of the data were used to fit the model. We then estimated the
posterior distribution for RM1,M2 and calculated pε for various values of ε .

First, we summarize the results for hot CT. The fitted GPD and normal models give similar
99.5th percentile point estimates, with posterior median 22.5s for both models (Figure 3.10). How-
ever, uncertainty is higher under the GPD model, as demonstrated through the model validation
metrics (Figure 3.11). The metric pε exceeds .8 when ε > 1 and exceeds .9 when ε > 2.5. The
difference in tolerance interval estimates increases as the confidence level increases, as expected,
highlighting the increased uncertainty as the degree of extrapolation increases. The 99.5/95%
tolerance interval for the GPD model is 26.1s, approximately 3.2s higher than under the normal
model.
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Figure 3.9: Return-level plot for hot CT (left) and cold CT (right). In the return-level plot, the x-
axis is on the log-scale. The vertical line represents the reliability population size nr corresponding
to r = .995. The horizontal line is the performance threshold τ = 23.5s. The black dots are the
observed quantiles as a function of the reliability population size; the blue lines are the theoretical
quantiles (solid) with 90% confidence bounds (dashed).

For cold CT, the GPD model provides more conservative inferences, with posterior median of
the 99.5th percentile at 23.4s compared to 22.9s under the normal model. As in the hot CT case,
uncertainty is higher under the GPD model (Figure 3.11). The metric pε is lower than the hot CT
case for lower values of ε . Further, the difference between tolerance interval estimates is larger
in the cold CT case, until the confidence level is sufficiently high, as anticipated. The 99.5/95%
tolerance interval for the GPD model is 26.1s, approximately 2.7s higher than under the normal
model.

For both hot and cold CT, the GPD-based percentile estimate has more uncertainty, due to the
fact that this model uses only the tails to estimate the percentile and makes few assumptions about
the shape of the tail (the normal model assumes exponentially decaying tails). The model validation
metrics highlight the impact of the GPD uncertainty (Figure 3.11). The standard deviation for both
hot and cold CT is close to 1, and percentile inferences could change by 1-3 distribution standard
deviations under a different statistical model (depending on the user-selected threshold for pε or
confidence level for the tolerance interval). Hence, considering that there is limited margin in this
example, the percentile estimates are rather sensitive to the model form assumptions.

Summary. Combining these three validation metrics, we conclude that: we are extrapolating
outside the range of the data, the model fit cannot be evaluated where prediction will occur, and
the percentile estimates are somewhat sensitive to selection of the normal model. Hence, we can
extrapolate to estimate the 99.5th percentile and a corresponding tolerance interval, but we should
not be surprised by model form error invalidating our statistical inferences. Note the difference in
information provided from these metrics as compared to the more traditional probability plots and
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Figure 3.10: Kernel density estimates of the posterior distributions for the 99.5th percentile. Data
were generated from the normal distribution (left) and t5 distribution (right). Percentile estimates
were calculated under the normal model (orange) and the GPD model censoring the lower 90% of
the observations (blue). The vertical dashed line reflects the hypothetical threshold of τ = 23.5s.
The grey kernel density estimate of the data is also shown.

goodness of fit tests (Section 3.1.2).

3.3 Discussion

The proposed tools provide a direct method for communicating the irreducible risk associated with
tail extrapolation in low probability, high consequence engineering applications. Clear commu-
nication and/or visualization of risk is essential for interpreting and utilizing statistical analyses
(Spiegelhalter et al., 2011). We demonstrated the inadequacy of distributional goodness of fit tests
and probability plots for model validation in tail estimation and proposed a set of new statisti-
cal tools to achieve this objective. We emphasize that statistical model validation and computation
simulation model validation are not conceptually or technically different tasks. Future work should
aim to highlight the notion that these two validation activities do not need to be viewed differently.
By relating the proposed metrics back to the notion of validation in computational simulation,
these metrics may be more intuitive to engineers and analysts who are familiar with validation in
this context.

Our illustrative example pertained to QMU for nuclear weapon stockpile evaluation. Multiple
different representations of uncertainty for QMU have been proposed in the literature, including
probability theory (enveloping both Bayesian and frequentist statistical inference), evidence theory,
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Figure 3.11: Validation metrics. (Left) pε for hot and cold CT performance measures. (Right)
Tolerance interval estimates for 99.5th percentile as a function of the confidence level for hot and
cold CT performance measures under the two different models.

and possibility theory (Helton, 2011). While substantial efforts have been made to delineate differ-
ent potential inferential frameworks for QMU, little effort has been placed on providing guidance
for choosing between these frameworks. In practice, when experimental data are available, proba-
bilistic modeling is used in the vast majority of QMU applications without explicitly considering
risk associated with model misspecification.

Parametric distribution fitting using two-parameter distributions (Section 3.1.1) is prevalent
in many engineering applications. We postulate that reasons for popularity include ease of esti-
mating the distribution, ease of using the results, and lack of data availability for less parametric
approaches. More flexible parametric approaches could be considered, such as four-parameter
distributions (Yeo and Johnson, 2000; Su, 2009), mixture distributions (Roeder and Wasserman,
1997), and non-parametric estimates (Pradlwarter and Schuëller, 2008). The additional flexibility
of these approaches will result in better accuracy in percentile estimation over two-parameter dis-
tributions, at the cost of efficiency. The model validation metrics proposed in this paper can also
be applied to these more flexible distributions.

The purpose of this paper was to provide a novel framework for evaluating parametric distribu-
tion fits when these distributions are used for tail estimation. The proposed methods have several
limitations. First, the scope of the examples in Section 3.2 was limited to two restrictive examples
for sake of brevity. In our example, the normal model approximation resulted in anti-conservative
percentile estimates. There are many other examples that could be considered where the normal
model is a conservative approximation (Romero et al., 2013). Future work could consider testing
the validation metrics on a broader set of candidate problems. Additionally, to assess model sensi-
tivity, we developed a novel metric to compare parametric models to extreme-value models using
only observations in the tail. The GPD model produced very conservative inferences, due to the
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conservative prior parameterization that we selected for the GPD model. While this conservatism
is desirable in high-consequence applications, future work could explore alternatives to the GPD
model. As an example, we could have compared the normal model to a censored version of the
normal model, where, similar to the GPD approach, observations are censored below a threshold
u. Fitting tail-based models requires a sufficient amount of data to be able to censor observations
at u and fit a model to the uncensored data. If the data are too sparse to be able to fit such models,
then extreme percentile estimation is likely not a prudent objective without an underlying physical
model for the outcome.

Estimating rare events using limited data is always a challenging task; our goal herein was the
development of concise metrics to articulate the risk of model form misspecification and extrapola-
tion. We hope that use of these validation metrics in practice will help improve risk communication
and ultimately improve the process for characterizing rare events using statistical inference.
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Chapter 4

Propose information integration models

Traditional tolerance intervals based on frequentist statistics allow for confidence and coverage
levels to be specified and compensate for the available quantity of data. We demonstrate in sec-
tion 2.2 why the application of traditional tolerance intervals in sparse data situations can easily
lead to misinforming results. One means of reducing the risk when conducting QMU analyses in
sparse data situations is to better leverage all available knowledge about the problem of interest.
Tolerance intervals based on Bayesian statistics offer a means of calculating tolerance intervals,
while also incorporating expert knowledge into the estimates. Bayesian tolerance interval estima-
tion is not a new statistical technique (Aitchison, 1964; Krishnamoorthy and Mathew, 2009), but
their utility in integrating information to make conservative and useful estimates of extreme per-
centiles could not be located in the existing literature. In this section, we consider how Bayesian
hierarchical modeling might improve percentile estimation in QMU applications.

4.1 Methods

Bayesian tolerance bounds can be calculated using Bayesian hierarchical modeling. In the present
context, Bayesian hierarchical modeling refers to modeling the uncertainty a distribution’s hyper-
parameters instead of the uncertainty in the distribution. Once prior knowledge is used to specify a
distributional form for the data as well as the hyper-parameter prior distributions, the uncertainty in
the hyper-parameters can then be calibrated to the available data. Propagating the hyper-parameter
posterior distribution through the specified distributional form will result in a family of distribu-
tions (of the specified distributional form), from which tolerance bound estimates can be made.
Expert knowledge about attributes of the underlying distributional form can be incorporated into
the assumed distributional form model that then impacts the likelihood function or into the prior
distributions of the hyper-parameters of the assumed distributional form. For instance, if a tail
subpopulation like that previously shown in Figure 1.5 was known to exist, the assumed distribu-
tional form could be formulated as a mixture of normal distributions. For that mixture of normal
distributions, the means, standard deviations, and relative weighting of the distributions would be
the hyper-parameter’s whose uncertainty would be calibrated to the available data. Additional in-
formation about the likely location and scale of the subpopulation could be incorporated into prior
distributions of the second distribution’s mean, standard deviation, and relative weighting.

Bayesian networks are a helpful method for visualizing Bayesian hierarchical systems (Ma-
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hadevan and Rebba, 2005; Urbina et al., 2012). Bayesian network representations of a T distribu-
tion and a normal distribution with a tail subpopulation are shown in Figure 4.1. For both networks
the observed data di is directly comparable to the assumed distributional forms D. Based on our
assumed model form (M) for D, information about the hyper-parameters θ can be learned

P(θ |D = di,M)≈ P(D = di|θ ,M)P(θ). (4.1)

Visualizing problems with Bayesian networks is helpful for checking the solution’s mathematical
construction as well as communicating the approach.

As an example application of Bayesian tolerance intervals estimation, consider the normal
mixture model Figure 4.1. If there is a subpopulation in the data, but we have not sampled from
the subpopulation, prior distributions could be placed on the subpopulation frequency w, mean
µ2, and variance σ2 to inform how inferences change in the presence of the subpopulation. Of
course, results will be highly sensitive to the priors, and therefore the priors should be informed by
a relevant source of data, such as a computational simulation model or a similar component (e.g.
similar design on a different system or previous build for development components).

D

µ ⌫�

di

T distribution

Ddi

mixture of 2 Normal distributions

wµ1 µ2 �1 �2

Figure 4.1: Bayesian network representations of Bayesian hierarchical models used to determine
tolerance intervals. The left network represent a T distribution with parameters µ for location, σ

for scale, and ν for the degrees of freedom. The right network represents a mixture of two normal
distributions, where w is the relative weighting of the two distributions.

4.2 Results

For the first illustration of Bayesian tolerance intervals, we assume that we know that the data
comes from a T distribution with significant tails approximately characterized by a T5 distribu-
tion. The prior distributions used for the location and scaling of the distribution are U (−2,2) and
U (0,3). The uncertainty in the location and shape scaling of that distribution are then explored
using a MCMC implementation within the software package STAN, accessed through the Python
interface PyStan (Stan Development Team, 2016 Version 2.14.0.0). Only 4,000 random combina-
tions of samples are used to determine the empirical reliability for each tolerance bound due to the
computational expense associated with each Bayesian computation. Figure 4.2 and 4.3 show how
Bayesian tolerance intervals for this T5 distribution scale with the quantity of available data, for
different confidence and coverage standards.
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Figure 4.2: How the empirical reliability (left plot) and percentile discrepancy (right plot) of the
99.9% coverage Bayesian tolerance intervals applied to data from a T5 distribution scales with the
number of data samples. Trends depending on different prescribed confidence levels (50%, 90%,
95%, and 99%) are shown as solid lines with dots and corresponding prescribed confidence levels
are shown as dashed lines. Values shown are average values from 4,000 random combinations.
Bayesian tolerance intervals explore the uncertainty of the distribution’s location and scale of the
T distribution, but assumed the degrees of freedom are known.

The empirical reliability of all confidence levels considered for the 99.9% coverage tolerance
bound are conservative, and this measure appears to scale towards the desired confidence level as
the number of data points increases. In this case, larger quantities of data cause the posterior distri-
bution to converge from the flat prior uncertainties to uncertainty distributions with high densities
around the true values. The percentile discrepancy observed for small data quantities is sensitive
to the prior distributions. Greater uncertainty in the hyper-parameter priors would result in larger
percentile discrepancy for small sample sizes, but will have less impact for larger sample sizes
whose posterior distributions are more influenced by the likelihood.

The 4,000 combinations appears to have been insufficient to smooth and separate the empirical
reliability of the different coverage levels for the 95% confidence tolerance bounds. All coverage
levels considered remain conservative and appear to scale towards the specified confidence level as
larger sample sizes are used. The percentile discrepancy remains positive and scale towards zero,
indicating that with enough data the percentile estimates should asymptote to the true value.

Next, we try the more challenging and realistic problem of estimating data from a T5 distribu-
tion with uncertainty about its location, scale and degrees of freedom. When dealing with sparse
data and increasing numbers of uncertain parameters, more informative hyper-parameter priors
will be helpful. For this study the location prior is N (0,3), scale prior is U (0,3) and degrees
of freedom prior is Γ(2,0.3)+ 1. Prior specification for the degrees of freedom hyper-parameter
requires additional study. In the context of tolerance interval estimation, it is desired that the priors
force conservative tolerance interval estimates in sparse data situations; see Section 3.1.6 for an
example. Placing uniform uncertainty from 1 to ∞ distributes too much prior density to light-tailed
distributions. A prior distribution that places more weight on heavier tailed distributions allows
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Figure 4.3: How the observed reliability (left plot) and percentile discrepancy (right plot) of the
95% confidence Bayesian tolerance intervals applied to data from a T5 distribution scales with the
number of data samples. Trends depending on different prescribed coverage levels (90%, 99%,
99.9%, and 99.99%) are shown as solid lines with dots and corresponding prescribed confidence
levels are shown as dashed lines. Values shown are average values from 4,000 random combina-
tions. Bayesian tolerance intervals explore the uncertainty of the distribution’s location and scale
of the T distribution, but assumed the degrees of freedom are known.

for tolerance interval estimates for sparse data to provide estimates that remain conservative by
assuming thick tailed distributions until sufficient data proves otherwise. The gamma distribution
prior on the degrees of freedom parameter attempts to favor heavy tails and was inspired by Juárez
and Steel (2010). Figure 4.4 and 4.5 show how Bayesian tolerance intervals based on uncertainty
in the location, scale, and degrees of freedom of a T distribution scale with different amounts of
coverage, confidence, and data in a dataset.

The first item of note in the performance of the Bayesian tolerance intervals is that the 99.9/50
TIs quickly become less conservative as larger datasets are used. This is likely due to the prior
specification for the degrees of freedom not placing enough weight on thicker tailed T distribu-
tions, but the percentile discrepancies show that the estimates remain close to the true values.
Although this performance for low confidence levels is undesirable, as noted in the scaling study,
50% confidence is never a prudent choice for a the confidence level. On the other hand, the three
higher confidence level-based TIs are conservative and appear to be scaling towards to the true
values. With larger datasets, we hypothesize that the lower confidence level TIs will trend back
towards to true percentile values as the posterior distribution converges to the true values.

The performance of the Bayesian tolerance intervals for different coverages are all conserva-
tive, likely due to being based on 95% confidence. All coverage levels appear to trend towards the
specified confidence level and true percentile value.

With Bayesian tolerance intervals, prior specification has a significant impact for sparse data
situations. If significant prior information is available, accurate and conservative estimates should
be viable even with sparse data. If minimal prior information is available, conservative estimates
can be made if the Bayesian problem is formulated with that goal. Inferences will be biased when
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Figure 4.4: How the observed reliability (left plot) and percentile discrepancy (right plot) of the
99.9 coverage Bayesian tolerance intervals applied to data from a T5 distribution scales with the
number of data samples. Trends depending on different prescribed confidence levels (50%, 90%,
95%, and 99%) are shown as solid lines with dots and corresponding prescribed confidence levels
are shown as dashed lines. Values shown are average values from 4,000 random combinations.
Bayesian tolerance intervals explore the uncertainty of the distribution’s location, scale, and de-
grees of freedom.

incorrect prior information is utilized, but incorrect user-information (such as model choice) will
also bias non-Bayesian tolerance interval estimates, as see in Section 2. When applied to the
aforementioned example problems, conservative estimates were found for all confidence levels
that are suggested as prudent choices for QMU analyses.

4.3 Discussion

The integration of information from multiple sources appears to be one promising method of deal-
ing with data poor environments. However, the exact means of implementing this framework in
QMU applications are not well-established and involve the injection of user specific information,
which can lead to bias if this information is incorrect. For instance, when using the Bayesian hi-
erarchical modeling approach, it is left to the modeler to chose which data will be used and how
that data is leveraged. The greater agility of the Bayesian hierarchical modeling approach makes it
difficult to provide concise processes for its application, but the flexibility also allows the approach
to better adapt to the large variability found in applications. The best advise for applying Bayesian
hierarchical modeling to QMU problems is to transparently communicate modeling decisions, so
that the bias is understood. For instance, it was found in creating the results shown in section 4.2
that the tolerance interval estimates were sensitive to the prior specification and that the sensitivity
was correlated with the amount of data available. This is not surprising for Bayesian methods,
where it is known that prior information dominates the posterior until sufficient evidence is avail-
able to surpass the prior understanding’s impact. What was gained from applying the Bayesian
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Figure 4.5: How the observed reliability (left plot) and percentile discrepancy (right plot) of the
95% confidence Bayesian tolerance intervals applied to data from a T5 distribution scales with the
number of data samples. Trends depending on different prescribed coverage levels (90%, 99%,
99.9%, and 99.99%) are shown as solid lines with dots and corresponding prescribed confidence
levels are shown as dashed lines. Values shown are average values from 4,000 random combina-
tions. Bayesian tolerance intervals explore the uncertainty of the distribution’s location, scale, and
degrees of freedom.

hierarchical modeling approach to T5 distribution based data was a relatively simple approach to
estimating tolerance intervals for “normal appearing” data with potentially greater weight in the
tails. Classically, this data would have been assumed to be normally distributed, and hypothesis
tests would be unlikely to provide evidence against that hypotheses, leading to non-conservative
tolerance interval estimates, as was demonstrated in subsection 2.2.3. The cost of using this frame-
work was the need to communicate the sensitivity of the estimates to any prior information used
and the greater amount of knowledge it takes to apply the framework, as compared to the applica-
tion of classical tolerance intervals. Additional exploration and application of Bayesian hierarchi-
cal modeling for QMU applications could reduce the cost of the approach, through increasing the
community’s knowledge base on the approach and streamlining methods of communicating user
bias when results are presented.
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Chapter 5

Anctipated Impact

The results in this report were generated from a one-year exploratory express (ExEx) LDRD project
funded by the Engineering Sciences Investment Area. In this ExEx LDRD, we quantified the large,
irreducible risk associated with current practices for experimental QMU. Specifically, statistical
model-form uncertainty is currently ignored when calculating confidence in margin assessments,
but this source of epistemic uncertainty typically dominates other sources of uncertainty. This
project effectively highlighted this unquantified risk; however, there remains a need to update
QMU methodologies to mitigate this risk, adapting to challenges of monitoring the reliability and
safety of the NW stockpile in the 21st century. This project effectively laid the groundwork for re-
searching new methods to improve QMU for experimental data at SNL. We illustrated the problem,
developed metrics for communicating risk, and proposed a path forward for using data integration
to mitigate risk.

This ExEx project should have high impact for a relatively small-scale project. We have already
secured follow-on programmatic funding, are actively working to transition the methods into the
mission-space, and have submitted a follow-on full LDRD proposal to the Engineering Sciences
investment area. We feel that QMU should be an active research area for the labs and are optimistic
that this project can generate some interest in this research area.

Follow-on funding. Results from this project are already having an impact on the SNL mis-
sion. Our team has procured programmatic funding to revise the QMU handbook and QMU train-
ings during FY17. This funding was a direct result of this LDRD work. Within the handbook
revision, we aim to downplay the role of the tolerance intervals and formal statistical inference
in sparse data situations (e.g. development), where heavy extrapolation is required. We will re-
move distributional goodness of fit tests from the handbook, based on the results from this project,
and highlight challenges associated with selecting a model form for tolerance interval estimation.
Further, we plan to remove methods that encourage heavy extrapolation outside the range of the
data, such as predicting aging trends into the future based on an unvalidated linear model. We will
also include information surrounding how computational simulation modeling can be leveraged in
experimental QMU applications; specifically, we aim to emphasize that experimental and compu-
tational simulation QMU cannot be treated as distinct entities (which is common in practice) if
we aim to quantify margin and uncertainty as accurately as possible. The handbook revision will
highlight the fact that, in QMU applications, uncertainties are high-dimensional and difficult to
quantify. Subsequently, in practice, data must be leveraged from multiple sources to fully charac-
terize risk. In short, QMU is an engineering exercise that sometimes uses statistics, not a statistical
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analysis that sometimes uses engineering.

Mission impact. The Statistical Sciences group works closely with component PRTs in devel-
opment to conduct QMU analyses to demonstrate positive margin in development, as well as with
surveillance analysts to conduct and review QMU analyses for Annual Assessment Reviews. We
are currently partnering with the NW development programs to use the results of this project to
improve upon margin assessment strategies in development.

New proposals. We received funding for a full, 2-year LDRD for FY18-20 to build on the work
developed within this project. The goal of this submitted proposal is to develop a unified Bayesian
modeling framework for experimental (i.e. physical simulation) and CompSim QMU. We hypoth-
esize that the proposed innovations will improve the robustness and credibility of margin assess-
ments. The proposed project represents a paradigm shift for experimental QMU, moving toward
a framework where margin is estimated by integrating all available information in a risk-informed
fashion, rather than extrapolating from un-validated and non-robust models; we demonstrated the
need for this paradigm shift in this project.
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Chapter 6

Conclusions

The goal of this project was to illustrate challenges in statistical estimation of percentiles for quan-
tification of margins and uncertainty (QMU) with sparse experimental data. To achieve this goal,
we addressed three objectives:

1. Quantify model form risk: Quantify the consequences of model misspecification using a
scaling study.

2. Define model validation metrics: Develop improved model validation metrics.

3. Propose information integration models: Explore potential solutions for relaxing stringent
model form assumptions through integrating multiple data sources.

In the first objective, we demonstrated that tolerance intervals are not robust to the underlying dis-
tributional form. In the second objective, we proposed a new approach to validating probability
distribution models that highlights degree of extrapolation, the model fit in the tails, and the sensi-
tivity of estimates to the selected model form. In the third objective, we outlined a proposed method
for integrating more information into tolerance interval estimates using Bayesian modeling.

By completing these three objectives, we demonstrated a need for new recommendations for
QMU with experimental data. Data are never exactly characterized by parametric probability dis-
tributions, and distributional form uncertainty can compromise the credibility of tolerance interval
estimates. We also illustrated how this problem is exacerbated by the fact that statistical tools
for probability distribution evaluation provide uninterpretable and misleading information, but are
used systematically due to a lack of accessible alternatives. This preliminary work will contribute
toward our ultimate goal of developing a workflow for distributionally robust QMU.

In this project, we have illustrated that decision-making using QMU is a complex process that
cannot be achieved using statistical analyses alone. Current statistical approaches can introduce
risk through extrapolative percentile estimation. While there is a clear advantage to having simple,
algorithmic statistical methods for QMU to encourage implementation, the cost of simplicity is
often credibility. In Figure 6.1, we present a flow chart for assessing the credibility of statistical
methods. In practice, an emphasis must be made on determining and acknowledging when there is
not enough information to conduct a principled statistical analysis; introducing unverifiable model-
ing assumptions to increase information compromises credibility. Experimental data and statistical
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analysis have substantial value in informing the safety and reliability of our NW stockpile; how-
ever, understanding the limits of the statistical methods is necessary to avoid overconfidence in
results and compromise credibility in data-driven inferences. We hypothesize that data integration,
i.e. combining sources of information, to improve credibility is the future of data-driven QMU.

Figure 6.1: Flow chart to decide whether and how to present statistical methods for decision-
making.
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Appendix A: Bayesian estimation for the normal and normal-
censored models

We use the normal-inverse gamma model for fitting the normal distribution to the data X :

X ∼ N(µ,1/τ)

µ ∼ N(µ0,n0τ)

τ ∼ Ga(α,β ) (6.1)

which results in posterior:

µ|τ,X ∼ N
(

nτ x̄+n0τµ0

nτ +n0τ
,(nτ +n0τ)−1

)
τ|X ∼ Ga

(
α +

n
2
,β +

∑(x− x̄)2

2
+

nn0

2(n+n0)(x̄−µ0)2

)
(6.2)

For the priors, we select n0 = 10−4 and α = β = .01. Inferences were not sensitive to the choice
of the prior parameters. We sampled from the posterior using a Gibbs sampler.

Appendix B: Bayesian estimation for the GPD distribution

We describe the GPD model and then detail the MCMC algorithm used for model fitting. Bayesian
inference for the GPD has been previously detailed in, for instance, Bermudez et al. (2001) and
Diebolt et al. (2005). We tailor our MCMC algorithm to err on the side of conservatism in per-
centile estimates in the absence of ample data.

Model

GPD likelihood. After censoring the observed data X at a threshold u, we model Y = X−u|X > u
using a generalized Pareto distribution. The likelihood for the GPD distribution is :

l(β ,ξ |y) =
n

∏
i=1

l(β ,ξ |yi) where

l(β ,ξ |yi) =

 1
β
(ξ yi

β
+1)−

ξ+1
ξ if ξ 6= 0

1
β

e−yi/β , if ξ = 0
(6.3)
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The parameter β is a scale parameter whereas ξ is a shape parameter that dictates the heaviness
in the tails. Asymptotically, the GPD model is a limiting case for many known probability distri-
butions. Specifically, the case ξ < 0 corresponds to short tailed distributions, such as the uniform;
ξ = 0 includes exponentially shaped right tails and encompasses many common distributions such
as the normal, lognormal, Weibull, and gamma distributions; ξ > 0 includes heavier tailed distribu-
tions, such as the Pareto and Student’s t- distributions (Gomes and Guillou, 2015). Implementing
an MCMC sampler for the GPD distribution is complicated by the sign of ξ , which determines
the heaviness of the distribution tails. Bermudez et al. (2001) recommend simply choosing the
sign of ξ based on maximum likelihood inferences for ξ . Herein, we restrict to ξ ≥ 0, given that
the validation metrics are targeted toward protecting against anti-conservatism due to heavy-tailed
distributions.

Mixture representation. We consider the cases ξ = 0 and ξ > 0 as two separate models,
Mξ=0 and Mξ>0. When ξ = 0, we parameterize the GPD distribution using β0; when ξ > 0, we
use parameter notation ξ ,β .

Y |ξ ,β ,Mξ>0 ∼ GPD(ξ ,β )

Y |β0,Mξ=0 ∼ GPD(0,β0)

β |Mξ>0 ∼ Uni f (aβ ,bβ )

ξ |Mξ>0 ∼ Uni f (aξ ,bξ )

β0|Mξ=0 ∼ Uni f (aβ ,bβ )

Mξ=0 ∼ Ber(w) (6.4)

Prior distribution. We place equal prior weight on the cases ξ = 0 and ξ > 0, assuming
w = .5. Parameters of the GPD distribution are often difficult to estimate (Bermudez et al., 2001);
therefore, we use proper uniform, but disperse, empirical Bayes priors on β ,β0 and ξ to achieve
good MCMC convergence.

We specify a uniform prior on β and β0, namely β ,β0∼U(a,b). We use an empirical Bayesian
method to select a and b. Specifically, we calculate the maximum likelihood estimate and cor-
responding standard error for β , denoted β̂ and ŝe(β ), and choose β̂ ± 15 ∗ ŝe(β ) for a,b (but
truncating the minimum on a at 0). Maximum likelihood estimation was implemented using the
evir R package (Pfaff and McNeil, 2012). We also considered an inverse-gamma prior on β ,β0,
following Bermudez et al. (2001), selecting the hyperparameters again using an empircal Bayesian
approach as well as using ‘non-informative’ hyperparameters of .01, .01. Results were similar
using the uniform and inverse-gamma priors; all results in this paper use the uniform prior. For
applications where β is small, the inverse gamma prior can perform poorly (Gelman et al., 2006),
and we recommend rescaling or using the uniform prior in this case.

Posterior distribution and sampling. The posterior is a mixture of the two different models,
Mξ>0 and Mξ=0 . We follow the MCMC approach in Stephenson and Tawn (2004), using reverse-
jump MCMC estimate the probabilities associated with each model. The MCMC algorithm is:
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1. Calculate the maximum likelihood estimates of ξ and β as starting values.

2. Use Metropolis-within-Gibbs to estimate the posterior distribution each model Mξ=0 and
Mξ>0 separately. For instance, for Mξ>0, the algorithm is:

• Sample β (t) from its conditional posterior, p(β |ξ (t−1)), using Metropolis-Hastings.
For the proposal density, we use a normal proposal density centered at β (t−1) with the
standard deviation selected to achieve good mixing.

• Sample ξ (t) from its conditional posterior, p(ξ |β (t)), using Metropolis-Hastings. We
use a normal proposal density centered at ξ (t−1)) with the standard deviation selected
to achieve good mixing.

3. Use the reverse-jump MCMC algorithm described in Stephenson and Tawn (2004) to esti-
mate w = P(Mξ=0|y).

Tuning parameters were chosen so that the acceptance rate is between 0.4 and 0.6 on average. For
the example problems in Section 3.2, we ran 50,000 MCMC iterations, with 10,000 runs discarded
as burn-in (fewer runs were used for the simulation studies). We evaluated model convergence by
running multiple chains and examining traceplots.

Simulation study

We conducted a simulation study to evaluate the performance of the Bayesian estimation proce-
dure relative to frequentist inference on the GPD model. Specifically, as a frequentist alternative,
we consider bootstrapping the maximum likelihood estimates for the GPD parameters as in, for
instance, (Diebolt et al., 2007). We used a simple parametric bootstrap for uncertainty quantifica-
tion, with confidence intervals constructed using the basic bootstrap method (Davison and Hinkley,
1997). Parametric bootstrapping simply requires constructing bootstrap samples by re-sampling
data from the fitted GPD model using MLE and then re-fitting the GPD model to all of the bootstrap
samples.

We consider the following cases in the simulation:

• Data are simulated from the standard normal and t5 distributions.

• We estimate the following percentiles: .99, .995, .999.

• We simulate data with sample sizes n = 100,250, and 1000.

• We choose u such that we keep the largest 10% of the simulated data.

For each case, we run the MLE method and the Bayesian method a total of 500 times. For the
Bayesian method, we produce a chain of 1200 values using a burn-in of 200 (running many fewer
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MCMC samples than the final results due to the computational expense). We examined one-
sided 95% confidence interval coverage (to make sure that the method effectively bounds the true
percentile 95% of the time), as well as bias in the percentile estimate, measured using the true
versus median estimate over the simulations. We used the median estimate in simulation because,
when data were sparse, the distribution of GPD estimates was highly right skewed (as desired, due
to the lack of data for extreme percentile estimation).

Based on the simulation results (Table 6.1 and Figure 6.2), we conclude that the Bayesian
model errs on the side of conservatism, while the frequentist method can be anti-conservative. The
errors in percentile estimation were closely related to how much data was available relative to both
the return-level and the non-parametric sample size requirement (Equation 3.2). In general, the
Bayesian method provides higher coverage than the frequentist method, and tends to be closer to
the nominal 95% coverage (Figure 6.2). The frequentist method tends to be anti-conservative, with
coverage nearly always well below the desired 95% When the sample size is small the Bayesian
method tends to be heavily conservative, yielding higher coverage than the maximum likelihood
method.

When the true value of the percentile of interest is smaller than u, both methods fail (as ex-
pected), and thus we emphasize the importance of choosing u with care. Specifically, we can
check that the fraction of the data used for tail estimation, denoted fu, satisfies the condition:

fu ≥ 1−F−1
B (α|n, p)/n (6.5)

Here, F−1
B (·|n, p) is the Binomial quantile function with parameters n and p. If this condition

holds, then at least one uncensored data point will be less extreme than the quantile of interest with
probability no less than 1−α . For instance, if Q0.98 is the quantile of interest and there are n = 100
observations, then we note that:

1−F−1
B (0.01,100,0.98)/100 = 0.06 (6.6)

Thus for the choice α = 0.01, we should choose u so that fu, the fraction of data used for tail
estimation, is no smaller than 0.06. We can make the choice fu = 0.1 and conclude that at least
one of the uncensored data points will be smaller than Q0.98 with probability greater than 0.99.

Typically, this condition will be less restrictive when the quantile of interest is very extreme.
For illustration, repeating the above example for Q0.999 and Q0.9999 gives constraints fu ≥ 0.01 and
fu ≥ 0 respectively.
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Figure 6.2: Coverages from the simulation study plotted versus percentile for the maximum like-
lihood (top panels) and Bayesian (bottom panels) methods, for data generated from the standard
normal (left panels) and the t-distribution with 5 degrees of freedom (right panels). The dotted line
is drawn at 0.95 representing desired coverage.
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Distr. p n Truth Median (MLE) Median (Bayes)

Normal 100 0.99 2.33 2.28 2.50
Normal 250 0.99 2.33 2.30 2.40
Normal 1000 0.99 2.33 2.33 2.39
Normal 100 0.995 2.58 2.52 2.88
Normal 250 0.995 2.58 2.54 2.75
Normal 1000 0.995 2.58 2.57 2.71
Normal 100 0.999 3.09 3.03 3.97
Normal 250 0.999 3.09 3.04 3.57
Normal 1000 0.999 3.09 3.03 3.48
t5 100 0.99 3.36 3.25 3.76
t5 250 0.99 3.36 3.31 3.45
t5 1000 0.99 3.36 3.38 3.42
t5 100 0.995 4.03 3.86 4.54
t5 250 0.995 4.03 3.92 4.13
t5 1000 0.995 4.03 4.05 4.08
t5 100 0.999 5.89 5.55 57.27
t5 250 0.999 5.89 5.74 6.11
t5 1000 0.999 5.89 5.75 5.69

Table 6.1: Percentile estimates using Bayesian and frequentist inference. The true percentile is
compared to the median across 500 simulations.
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